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Self-organized segregation of traders
within a market

By N. F. Johnson1, P. M. Hui2 and T. S. L o2

1Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
2Department of Physics, The Chinese University of Hong Kong,

Shatin, New Territories, Hong Kong

We study a simple competitive market, in which individual traders adapt their trad-
ing strategies according to past experience. Because of the limited knowledge avail-
able to them, they are forced to make decisions based on inductive, rather than
deductive, thinking. We show that a population of competing traders with similar
capabilities and knowledge will tend to self-segregate into opposing groups charac-
terized by extreme behaviour. To be successful, a trader should behave in an extreme
way, by either always copying or rejecting past trends in the market’s history. Cau-
tious traders tend to perform poorly.

Keywords: evolutionary dynamics; competitive market; microstructure;
strategies; bounded rationality; trading

A reasonable view of a financial market is that it comprises a population of indi-
vidual members (i.e. traders, institutions) who adapt their interactions, and hence
behaviour, according to their past experiences (Bak 1997; Kauffman 1993; Stewart
1998; Arthur 1994; Johnson et al . 1998). (For examples of ‘microscopic’ economics-
based models in the physics literature, see Bak et al . (1997), Ilinski & Stepanenko
(1998), Caldarelli et al . (1997), Cont & Bouchaud (1997), Savit et al . (1997) and
Amaral et al . (1998)). In particular, traders often find themselves competing for a
limited resource, or to be in a minority. A simple example is the situation where there
are more buyers than sellers: this tends to increase the price and hence benefits the
sellers. Hence it would be better for a trader to be in the minority group of sellers.

Here we introduce a simple model for such an evolving population containing
traders who compete to be in the minority. Only partial information about the
market is available to the traders and no a priori ‘best’ strategy exists: traders are
hence forced to make decisions based on inductive, rather than deductive, thinking.
Each trader tries to learn from his/her past mistakes and will adjust his/her strategy
in order to survive. We find that a population of such traders with similar capabilities
will tend to polarize itself into opposing groups. Although a large number of possible
strategies exist, the most successful traders are those who behave in an extreme way,
by either copying, or rejecting, past trends in the market.

Inspired by Challet & Zhang (1997, 1998) we consider the model of an odd number
N of traders repeatedly choosing whether to be in group ‘0’ or group ‘1’: choosing
group 0 denotes choosing to buy a given asset while 1 denotes choosing to sell the
asset. After every trader has independently chosen a group, the winners are those
in the minority group, i.e. the group with fewer traders. If the winning group is 0,
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there are more sellers than buyers and hence the price drops at that time-step. If
the winning group is 1, there are more buyers than sellers and the price rises at that
time-step. The ‘output’ for each time-step is a single binary digit denoting the win-
ning group, or equivalently whether the market price went down or up. Each trader
is given a bit-string of length m containing the previous m outcomes. Each trader
also has access to a common register or ‘memory’ containing the outcomes from the
most recent occurrences of all 2m possible bit-strings of length m. Consider m = 3;
denoting (xyz)w as the m = 3 bit-string (xyz) and outcome w, an example memory
would comprise (000)1, (001)0, (010)0, (011)1, (100)0, (101)1, (110)0, (111)1. Fol-
lowing a run of three wins for group 0 in the recent past, the winning group was
subsequently 1. Faced with a given bit-string of length m, it might seem sensible for
a trader simply to predict the same outcome as that registered in the memory. The
trader will hence choose group 1 following the next 000 sequence. If 0 turns out to
be the winning group, the entry (000)1 in the memory is replaced by (000)0. If all
N traders act in this way, however, the system will be inefficient since all traders
will choose the same group and will hence lose; all the traders are spotting the same
trends and assuming that they will continue indefinitely. Because of this, the trend
fails to continue. A critical quality of a successful financial trader, for example, is the
ability to follow a trend as long as it is valid, but to predict correctly when it will
end. Hence we assign each trader a single number or ‘strategy’ p: following a given
m-bit sequence, p is the probability that the trader will choose the same outcome
as that stored in the memory, i.e. he/she will follow the current prediction, while
1 − p is the probability he/she will choose the opposite, i.e. he/she will reject the
current prediction. Using the example memory, the trader will choose 1 (i.e. sell)
with probability p after spotting the sequence 000, and 0 (i.e. buy) with probability
1− p.

Each time a trader gets into the minority (majority) group, he/she gains (loses)
one point. If the trader’s score falls below a value d < 0, then his strategy is modified,
i.e. the trader gets a new p value which is chosen with an equal probability from a
range of values, centred on the old p, with a width equal to R. Hence d is the amount
of money a trader is willing to lose before modifying his/her strategy. Although this
is a fairly crude ‘learning’ rule as far as machines are concerned (Sutton & Barto
1998), in our experience it is not too dissimilar from the way that humans actually
behave in practice. Since 0 6 p 6 1, we can for simplicity enforce reflective boundary
conditions. Our conclusions do not depend on the particular choice of boundary
conditions (see figure 1). Upon strategy modification, the trader’s score is reset to
zero. Changing R allows the way in which the traders learn to be varied. For R = 0,
the strategies will never change (though the memory will). If R = 2, the strategies
before and after modification are uncorrelated. For small R, the new p value is close
to the old value.

As traders are constantly attempting to do the opposite of the others, a reasonable
expectation is that they should eventually organize themselves so that their strategies
are evenly spread within 0 6 p 6 1. Alternatively, given that no a priori best strategy
exists, one might expect that traders would be ambivalent as to whether a present
trend will continue, and hence cluster around p = 1

2 . Surprisingly, the opposite is
true. Figure 1a shows the frequency distribution P (p) at large time. The distribution
P (p) eventually becomes peaked around p = 1 and 0 regardless of the initial P (p)
distribution; these p values, respectively, correspond to always or never following
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Figure 1. Distribution of (a) strategies P (p) at large times. At t = 0, P (p) is chosen to be flat.
(b) Corresponding lifespans L(p). R = 0.2, N = 101, d = −4 and m = 3.

what happened last time. The lifespan L(p), defined as the average length of time a
strategy p survives between modifications, shows similar behaviour. Henceforth we
denote P (p) and L(p) as representing the long-time limits. If we consider the game
simply as a random walk, with individual traders deciding randomly which group
to choose, we would expect the mean number in group 0 or 1 to be 1

2N with a
standard deviation of

√
N/4. At each time-step, the net number of points awarded

will therefore be −√N . The average lifespan would be d
√
N . The observed average

lifespan is indeed proportional to d
√
N . However, the average value of the L(p) in

figure 1b is larger than d
√
N by a factor of approximately 2 for d = −4, confirming

that the traders are organizing themselves better than randomly. Furthermore, the
root-mean-square (RMS) separation of the strategies is higher than the value for
uniform P (p), indicating the desire of traders to do the opposite of the majority.
It increases with N due to increased possibilities for self-organization. Even when
R is large, and the strategy values are hence picked randomly upon modification,
the RMS strategy separation remains high. The RMS strategy separation and the
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average value of L(p) are typically maximal at R ∼ 0.5; this is a compromise between
a lack of learning when R ∼ 0 and excessive strategy modification for large R. We also
note that the standard deviation of the actual attendance time-series for group 0 (or
group 1) is less than that obtained for traders choosing via independent coin-tosses:
this again confirms that the system is organizing itself better than random.

Varying the length of the bit-string m has little effect on P (p) and L(p): since
all traders have similar capabilities and available information, these benefits tend to
cancel out. It is what each trader decides to do with the common knowledge that
matters (p = 0, 1 traders outperform p = 1

2 traders). Similarly if the memory is not
updated dynamically according to the recent outcomes as discussed earlier, but is
instead kept constant (i.e. time independent) or is randomly chosen at each time-
step, then P (p) and L(p) are also essentially unchanged. Once again, the memory
is common to all traders and hence all traders agree on the current prediction: no
trader hence has any relative advantage in terms of available information (Cavagna
(1998) proposes a similar result for the model of Challet & Zhang (1997, 1998)). It
has been shown for the basic minority game (Manuca et al . 1998), in contrast to the
claim in Cavagna (1998), that the memory is relevant since it can introduce hidden
correlations into the winning-group time-series. This point will be discussed in detail
for the present model elsewhere.

We now provide some analytic analysis. The simplest example of our system con-
tains N = 3 traders i, j, k with memory m and three discrete p values p = 0, 1

2 , 1.
(The fact that N < 3 is impossible suggests that our system contains the level
of complexity typically associated with three-body, versus two-body, problems). All
traders agree on the current prediction (say 0). Trader i will choose 0 or 1 with
probability pi and 1−pi, respectively. Likewise for j (pj) and k (pk). The 23 possible
decisions for ijk are 000, 001, 010, 100, 110, 101, 011, 111. There are 33 = 27 possible
configurations (pi, pj , pk). For a given (pi, pj , pk), the eight possible decisions yield
the expected gain for the traders. For example, for (pi, pj , pk) = (0, 0, 1

2), i and j
both choose 1 while k chooses 0 with probability 1

2 . Hence k wins with probability
1
2 whereas i and j both lose. The net number of points gained per trader per turn,
given by the points awarded minus the points deducted, is −1 for i, −1 for j and 0
for k. The total is hence −2. Given that the maximum is −1 (there is a maximum
of one winner) we see that (0, 0, 1

2) is not optimal.
Table 1 shows the various configuration types, or classes. The last column shows

the average points per trader: [−1
2 ] for class (i) implies the average trader loses −1

2
points per turn, and would hence modify his/her strategy after time 2d. Such strategy
modification allows the system to sample the 27 configurations. Classes (vi)–(viii) are
optimal, having maximum points. To obtain the average distribution P (p) and L(p),
we must average over all 27 configurations. Since some classes are more favourable
(i.e. more points), we should weight the distributions in an appropriate way. In
the extreme case of large weighting, we include only the optimal classes (vi)–(viii),
yielding

P (0) : P (1
2) : P (1) = 2.5 : 1 : 2.5 and L(0) : L(1

2) : L(1) = 5 : 1 : 5.

For zero weighting, we consider instead the system as visiting all configurations with
equal probability regardless of points gained per trader; such a zero-weight averaging
is similar to that for the microstates in a gas within the microcanonical ensemble
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Table 1. Configuration classes showing the distribution of the three traders (each denoted by x)
and the average points awarded per time-step for each strategy-value p

(Also given are the number of distinct configurations per class, and the average number of points
per trader per time-step.)

no. average
class p = 0 p = 1

2 p = 1 configs. pts/trader

(i) — xxx[− 1
2 ][− 1

2 ][− 1
2 ] — 1 [− 1

2 ]
(ii) x[− 1

2 ] xx[− 1
2 ][− 1

2 ] — 3 [− 1
2 ]

(iii) xx[−1][−1] x[0] — 3 [− 2
3 ]

(iv) xxx[−1][−1][−1] — — 1 [−1]
(v) — — xxx[−1][−1][−1] 1 [−1]
(vi) x[1] — xx[−1][−1] 3 [− 1

3 ]
(vii) xx[−1][−1] — x[1] 3 [− 1

3 ]
(viii) x[0] x[−1] x[0] 6 [− 1

3 ]
(ix) — xx[− 1

2 ][− 1
2 ] x[− 1

2 ] 3 [− 1
2 ]

(x) — x[0] xx[−1][−1] 3 [− 2
3 ]

and yields

P (0) : P (1
2) : P (1) = 1 : 1 : 1 and L(0) : L(1

2) : L(1) = 1 : 1 : 1.

For an intermediate case, whereby all classes are weighted by the average points per
trader, we obtain

P (0) : P (1
2) : P (1) = 1.1 : 1 : 1.1 and L(0) : L(1

2) : L(1) = 1.5 : 1 : 1.5.

In fact, any sensible weighting that favours the more profitable configurations yields
a non-uniform P (p) and L(p) as observed numerically. This implies that the popu-
lation, by self-segregating, has also managed to self-organize itself around the most
profitable configurations. We emphasize that the system is dynamic since the mem-
bership of the various configurations is constantly changing (i, j and k interdiffuse)
but P (p) remains essentially constant. For general N we can loosely think of i, j, k
as three equal-size groups of like-minded traders.

In summary, we have shown that an evolving population of traders with similar
capabilities and information will self-segregate. To flourish in such a population, a
trader should behave in an extreme way (p = 0 or p = 1).

We thank R. Jonson, D. Challet and P. Binder for discussions.
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